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Fig. 2 A partial term scheme for Fe III, showing the observed 
transitions, some lower-lying terms of the same even parity and 
the first two terms of odd parity. Term energies are given in cm-l 

abilities found by GarstangH for lower-lying levels are in each 
case -1. Thus it is likely that the upper levels have populations 
close to their Boltzmann values with collisional de-excitation 
rates exceeding radiative decay rates. Then the ratio of the 
[Fe III] line fluxes to those of permitted transitions would be 
sensitive to the electron density. Detailed calculations of the 
atomic data are required to establish the collisional-radiative 
regime for the individual lines. The upper levels may attain only 
a pseudo-Boltzmann population if collisional excitation to 
higher states of odd parity exceeds the rate for collisional de­
excitation to lower levels. In any case the new [Fe III] iden­
tifications will provide more information on the structure of the 
solar chromosphere-corona transition region. 

If the asG, asP and bsD levels are collisionally de-excited in 
the solar atmosphere, they could become stronger, relative to 
permitted transitions of species of similar excitation, in 
astrophysical sources of lower electron density. For this reason 
their presence is being investigated in such sources, including 
the Seyfert galaxy NGC 4151, which has unidentified emission 
features around 1,575, 1,581 and 1,518 A (refs 13 arid 14). 
[Fe III] emission is observed in the optical spectrum of NGC 
4151 1s·16

• The relative intensities of the quintet transitions in 
NGC 4151 and other sources cannot be predicted until collision 
cross-sections and transition probabilities are known, and these 
are urgently required to establish whether or not the [Fe III] 
lines are of wider astrophysical significance. 
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A hierarchical O(N log N) 
force-calculation algorithm 

Josh Barnes & Piet Hut 

The Institute for Advanced Study, School of Natural Sciences, 
Princeton, New Jersey 08540, USA 

Until recently the gravitational N-body problem has been modelled 
numerically either by direct integration, in which the computation 
needed increases as N 2

, or by an iterative potential method in 
which the number of operations grows as N log N. Here we 
describe· a novel method of directly calculating the force on N 
bodies that grows only as N log N. The technique uses a tree­
structured hierarchical subdivision of space into cubic cells, each 
of which is recursively divided into eight subcells whenever more 
than one particle is found to occupy the same cell. This tree is 
constructed anew at every time step, avoiding ambiguity and tang­
ling. Advantages over potential-solving codes are: accurate local 
interactions; freedom from geometrical assumptions and restric­
tions; and applicability to a wide class of systems, including 
(proto-)planetary, stellar, galactic and cosmological ones. Advan­
tages over previous hierarchical tree-codes include simplicity and 
the possibility of rigorous analysis of error. Although we concen­
trate here on stellar dynamical applications, our techniques of 
efficiently handling a large number of long-range interactions and 
concentrating computational effort where most needed have poten­
tial applications in other areas of astrophysics as well. 

Until recently, the dynamics of a system of self-gravitating 
bodies (the gravitational N-body problem) has been modelled 
numerically in two fundamentally different ways. The first one, 
direct N-body integration, involves the computation of all 
!N(N -1) forces between all pairs of particles. This allows an 
accurate description of the dynamical evolution but at a price 
that grows rapidly for increasing N 1

• The second way involves 
a two-step approach: after fitting the global potential field to a 
special model with a number of free. parameters, each particle 
is propagated in this background field for a short time before 
the same procedure is reiterated. The potential method involves 
a number of operations that grow only as N log N. Thus 
calculations can be performed more quickly, but with a loss of 
accuracy and generality. The special nature of each potential­
solving code is caused by the need to use some technique that 
is tuned to the geometry of the problem being considered (such 
as Fourier transforms or spherical or bispherical harmonics2

). 

Recently, some of the advantages of both approaches have 
been combined by using direct integrations of force while group­
ing together increasingly large groups of particles at increasingly 
large distances. This corresponds to the way humans interact 
with neighbouring individuals, further villages and increasingly 
further and larger states and countries-driven by increasing 
cost and decreasing need to deal with more removed groups on 
an individual basis. The first implementation of such a hierar­
chical grouping of interactions was given by Appee, who used 
a tree structure to represent an N-body system, with the particles 
stored in the leaves of the tree. An independent implementation 
by Jemigan4 and Porters incorporated regularization of close 
encounters. However, in both codes the logarithmic-growth gain 
in efficiency comes at the price of introducing additional errors 
that are hard to analyse because of the arbitrary structure of 
the tree. Nearby particles may be grouped as leaves of nearby 
branches, but the phase-space flow of realistic self-gravitating 
systems demands a continuous updating of the tree structure to 
avoid tangling and unphysical grouping, requiring complicated 
book-keeping. It is not at all clear how to understand and 
estimate the errors caused by the process of approximating 
lumps of particles together as single pseudo-particles, because 
individual lumps can take more or less arbitrary shapes and sizes. 
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Fig. 1 Hierarchical boxing and force calculation, presented for 
simplicity in two dimensions. On the left, a system of particles and 
the recursive subdivision of system space irduced by these parti­
cles. Our algorithm makes the minimum number of subdivisions 
necessary to isolate each particle. On the right, how the force on 
particle xis calculated. Fitted cells contain particles that have been 
lumped together by our 'opening angle' criterion; each such cell 

represents a single term in the force summation. 

We present here a new way of realizing a tree-based force 
calculation with logarithmic growth of force terms per particle 
that avoids the tree-tangling complications mentioned above, 
allows rigorous upper bounds for errors that arise from neglect­
ing internal lump structure, and also offers a well-defined pro­
cedure for estimating more typical, average errors. The essential 
ingredients are (1) a virtual cubical division of empty space in 
(sub)cells with daughter cells having exactly half the length, 
breadth and width of their parent; (2) the construction of the 
actual tree of cells from the virtual one by (i) discarding empty 
subcells, (ii) accepting subcells with one occupant, and (iii) 
recursively dividing shared occupancies in sub-subcells; and (3) 
performing this reconstruction ab initio at every time step. 

Given this book-keeping structure, the dynamics are imple­
mented by assigning to every non-empty cell, as well as to 
higher-order cells containing more than one particle, a 
(pseudo- )particle that contains the total mass in the cell located 
at the centre-of-mass of all the particles it contains. Any single 
real particle feels the force of all (pseudo-)particles in the system 
that represent a cell small enough and far enough to forego the 
need of further division, thereby screening all its component 
(pseudo-)particles. 

A computer program that implements the hierarchical force 
calculation is available from us upon request. It contains less 
than a thousand lines of C code: 150 lines of definitions, 150 
lines for tree construction, 100 lines for force calculation and 
100 lines for a simple integrator; the remaining lines handle 
input-output book-keeping. 

In what follows we summarize some of the more technical 
details. The method we use to compute a force in time of 
O(log N) is based on a representation of the mass distribution 
as a hierarchical tree structure, constructed as follows. Begin 
with an empty cubical cell big enough to contain the system. 
One by one, load particles into this 'root' cell. If any two particles 
fall into the same cell, divide that cell into eight cubical subcells 
(thus the first such division occurs as soon as the second particle 
has been loaded in, splitting the system into at least eight pieces). 
Each divided cell is represented by a data structure that holds 
information about the subcells it contains: a summary of global 
physical quantities (mass and centre-of-mass position) as well 
as pointers to the daughter cells, which may be referenced to 
obtain more detailed information. Continue this process of 
subdividing to as high a level as required. When all N particles 
have been loaded, the system space will have been partitioned 
up into a number of cubical cells of different sizes, with at most 
one particle per cell. These particle-bearing cells are grouped 
together into larger cubical cells, which are grouped together 
into still larger parent cells, and so on down to the root cell, 
which contains the entire system. The average size of a particle-
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Fig. 2 Box structure induced by a three-dimensional particle 
distribution. This example was taken from the early stages of an 
encounter of two N = 64 systems, and shows how the boxing 
algorithm can accommodate systems with arbitrarily complicated 
geometry. The particle distribution corresponding to a system with 

32 times as many members is shown in Fig. 3. 

bearing cell is of the order of the interparticle spacing, so the 
'height of the tree' (that is, the number of subdivisions required 
to reach a typical cell, starting at the root), is of O(log2 N

113
) = 

O(log N), and the time required to construct the tree is of 
0( N log N). The final step in constructing the tree is to tag the 
subdivided cells with the total mass and centre-of-mass position 
of the particles they contain; by propagating information down 
the tree from the particles towards the root, this step may also 
be accomplished in a time of 0( N log N). 

Having constructed such a tree, the force on any particle p 
may be approximated by a simple recursive calculation. Start 
at the root cell of the tree, which contains the entire system. Let 
I be the length of the cell currently being processed and D the 
distance from the cell's centre-of-mass to p. If 1/ D < e, where 
() is a fixed accuracy parameter -1, then include the interaction 
between this cell and p in the total being accumulated. Other­
wise, resolve the current cell into its eight subcells, and recur­
sively examine each one in turn. The core of the force calculation 
routine may be compactly expressed in SCHEME, a dialect of 
LISP: 

(define (acceleration parti~le ensemble) 
(cond ((singleton? ensemble) 

(newton-acceleration particle (the-element ensemble))) 
((< (/ (diameter ensemble) 

(distance particle (centroid ensemble))) 
theta) 

(newton-acceleration particle (centroid ensemble))) 
(else 
(reduce sum-vector 

(map (lambda (e) (acceleration particle e)) 
(subdivisions ensemble)))))) 

Note that in LISP, a function with arguments f(x, y, .. . ) is 
written as (f x y .. . ). For example, (newton-acceleration p 1 p2 ) 

calls a function to compute the acceleration of particle p 1 due 
to p2 • The ( cond ... ) form is a three-way conditional, computing 
the acceleration directly in the first two cases, and by recursion 
in the final (else ... ) clause. Elements of the SCHEME 
programming language are presented in Abelson et a/.6

• Figure 1 
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Fig. 3 Encounter of two 
spherical systems, simu­
lated by using our hierar­
chical acceleration tech­
nique in combination with 
a simple leap-frog 
integrator. The incoming 
systems were launched on 
parabolic orbits, but 
become bound because of 
dynamical friction. Note the 
striking wakes lagging 
behind the density centres 
of the two systems at t = 3, 
4 (in our units the gravita­
tional constant, the mass of 
each galaxy and the total 
binding energy of the whole 
system all equal unity). With 
a total of N = 4,096 particles 
in the system and an open­
ing angle criterion of 8 = 1, 
the number of two-body 
interactions computed by 
our technique is less than 
0.1 of the !N/(N-1) 
required by a direct-summa­
tion force calculation. The 
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calculation took 10 h on a VAX 11/780 (in double precision because of compiler limitations; a single-precision calculation would take half 
as long). With a time step <l.t = 0.05 and softening parameter e = 0.025, energy was conserved to -1%. 

illustrates this process for a small number of particles in two 
dimensions; increasing the number to 104 -105 in three 
dimensions typically increases the number of interactions per 
particle to only of order 102

• 

The number of interactions considered by this procedure in 
computing the force on p is of order log N for large N. Suppose 
the mass distribution is homogeneous within the root cell. 
Increasing the total number of particles eightfold is roughly 
equivalent to adjoining eight similar root cells together. The 
seven new cells not containing p will contribute some 'relatively 
small' number t,.N, of additional terms to the force approxima­
tion. Now the expectation value (t,.N,) depends on 8, but not 
on the total number of particles or the size of the system. Thus 
the time required to calculate the force on a particle increases 
by a constant increment (of (t,.N,)), whereas N increases by a 
constant factor (of eight). In other words, the time required by 
the CPU (central processing unit) to compute the force on a 
single particle is on the scale of O(log N). 

A rigorous error analysis of the force-calculation algorithm 
is possible because our prescription yields a unique, well-charac­
terized tree structure based on up-to-date particle positions. 
Each compound cell that we choose not to subdivide introduces 
a small error due to quadrupole and higher-order moments of 
the mass distribution within the cell (the dipole term vanishes 
when expanding around the centroid). The magnitude of this 
error may be bounded by a 'worst-case' analysis for which the 
quadrupole moment is maximized (for example, two lumps 
placed in opposite comers of the cell), and estimated from an 
analysis of root-mean-square fluctuations within each cell 
together with estimates of the coherence time scales for these 
fluctuations. We shall present this analysis in a more detailed 
paper. In practice, forces computed even with an opening angle 
parameter as large as 8 = 1 are still accurate to -1% with little 
dependence on N. Empirically, we find the force error scales 
approximately as the -1.5 power of the computing time. These 
errors are only weakly correlated from one time step to the next, 
resulting in a build-up close to a random walk rather than a 
steady drift. 

As a test of our new method, we have written a simple N-body 
code using our force-calculation scheme with a time-centred 
leap-frog integrator, in which positions and velocities are alter­
nately advanced. A parabolic encounter of two galaxies is initi-

ated at a distance of several galactic radii, leading to a box 
structure as shown in Fig. 2. The results of a 4096-body calcula­
tion of such an encounter are shown in Fig. 3. This calculation 
took 10 h of CPU time on a VAX 11/780 with a floating point 
accelerator. 

There are several ways in which the code can be made more 
efficient. We are now investigating these, and we shall discuss 
our results in detail elsewhere. We just mention three possible 
improvements: ( 1) using a higher-order integration scheme such 
as Aarseth's fourth-order polynomial method rather than our 
second-order leap-frog method, which will require careful 
adjustments to avoid glitches caused by discrete differences 
between the grouping of particles in cells from one time step to 
the next (for example by multiply covering space in partly 
overlapping virtual grids); (2) including quadrupole moments 
in the description of cells as pseudoparticles characterized by 
the total mass in the cell as located in the centre of mass; (3) 
introducing individual time steps for particles which undergo 
strongly changing interactions, which could be accomplished 
by subsequently halving the time step when needed-thus 
extending the three-dimensional spatial halving of cells to a 
four-dimensional space-time division in rectangular subcells. 

An interesting aspect of our new code is the different emphasis 
it places both on software and hardware, in comparison with 
other codes. On the hardware side, the hierarchical structure of 
our code does not lend itself easily to vectorization (although 
this may well be worth exploring). In contrast, we expect our 
code to be most useful on computers with highly parallel archi­
tectures (with one processor per particle, computer time is 
reduced approximately by a factor of N). On the software side, 
the hierarchical decomposition of the problem is best realized 
by using recursive descriptions. Recursive function calls and 
other general control and data structures are not well supported 
or clearly represented in FORTRAN. This has led us to consider 
other programming languages such as C, PASCAL and LISP. 
Another advantage offered by these languages is that they permit 
a clarity of presentation of our ideas, which makes the underlying 
techniques available to other researchers. Of course, if a par­
ticular computer has a FORTRAN compiler which is an order 
of magnitude faster than other compilers, it makes sense to 
translate a version of our program into FORTRAN, trading 
clarity and modularity for efficiency. 
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Our application toN-body calculations is only one in a range 
of possibilities including the calculation of radiation fields 
(replacing particles with sources) and self-gravitating fluid flow 
(cell division being governed by the complexity of the local flow 
pattern). Thus our technique forms a general tool for simul­
taneously handling a large number of long-range interactions 
and for concentrating computing resources locally where most 
needed. 

We thank John Bahcall, Jeremiah Ostriker and especially 
Gerald Sussman for interesting discussions. Part of this work 
was supported by the NSF through grant PHY-8217352; P.H. 
is an Alfred P. Sloan Foundation fellow. 
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The 400-km seismic discontinuity 
and the proportion of 
olivine in the Earth's upper mantle 

Craig R. Bina & Bernard J. Wood 

Department of Geological Sciences, Northwestern University, 
Evanston, Illinois 60201, USA 

The 400-km seismic discontinuity has traditionally been ascribed 
to the isochemical transformation of a-olivine to the P-modified­
spinel structure in a mantle of peridotitic bulk composition1

-4;. It 
has recently been proposed7

•
8 that the observed seismic velocity 

increase at 400 km depth is too abrupt and too small to result 
from a phase change in olivine but instead requires that the 
transition zone be chemically distinct in bulk composition from 
the uppermost mantle. By requiring phase relations in the 
Mg2Si04-Fe2Si04 system to be internally consistent thermody­
namically, we find that the a-P transition in olivine of mantle 
(Mtw.9Feo.1) 2Si04 composition is extremely sharp, occurring over 
a depth interval (isothermal) of -6 km. The magnitude of the 
predicted velocity increase is in agreement with that observed 
seismically9

'
10 if the transition zone is composed of -60-70% 

olivine. Thus, our results indicate that seismic velocities across the 
400-km discontinuity are consistent with a transition zone of 
homogeneous peridotitic composition and do not require chemical 
stratification. 

The 400-km seismic discontinuity reflects a change in elastic 
properties of the mantle and has been attributed to a phase 
transformation of olivine to a spinel-like structure at high press­
ures 1• Subsequent work has given rise to a generally accepted 
model in which the discontinuity is attributed to such an 
isochemical phase change in a mantle of homogeneous olivine­
rich, or peridotitic, composition2

-
6

• This model has the advan­
tage of simplicity and can be tested experimentally. 

Recently, it has been suggested7
•
8 that a phase transition in 

olivine would produce a gradual velocity increase over an 
appreciable depth interval-rather than the abrupt increase 
observed seismically-and that the magnitude of the increase 
would be more than twice that actually observed. It was pro­
posed that the seismic data require the transition zone to be 
chemically distinct in bulk composition from the uppermost 
mantle, with the transition zone consisting of a pyroxene-garnet 
rich 'piclogite' composition containing either 16% 7 or 30% 8 

olivine. The 400-km discontinuity is ascribed to either a change 
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Fig. 1 Isothermal pressure-composition diagram showing calcu­
lated boundaries for olivine polymorph stability fields at 1,273 K. 
Also shown are experimental data points 12

-
14

•
18

-
20 delimiting the 

high-pressure stability limits of the low-pressure assemblages (&), 
the low-pressure stability limits of the high-pressure assemblages 
(T), and the compositions of 'Y phase which coexist with a phase 
at the indicated pressures (e). Dashed line shows 

(M& 9 Fe0 1hSi04 composition. 

in chemical composition from peridotite to underlying piclogite 
or-if this periodotite/piclogite boundary is referred to shal­
lower depths-to the transformation of pyroxene to a garnet-like 
structure. 

In a previous study11
, we showed that the transformation of 

pyroxene to a garnet structure would produce a smooth and 
gradual increase in seismic velocity, rather than the discontinuity 
observed at 400 km. In the present study, we have examined the 
olivine-spinel phase transitions to determine whether the 
observed seismic velocity variations may be attributable to such 
a phase change. The a-olivine to /3-modified-spinel transition 
has been commonly represented by a broad 'a + /3 divariant 
loop', a region in which both phases coexist in stable equili­
brium. If this representation were accurate, the a phase would 
transform to the p phase in a continuous and gradual manner, 
and this phase change would not produce a sharp discontinuity 
in seismic velocity. However, the available experimental data 
(Fig. 1) do not constrain the width of this a+ /3 loop, since no 
high-pressure experiments have yet produced both phases 
together in equilibrium for olivine of manti~ (M&.9 Fe0.1hSi04 

composition. We have used available thermoelastiC and 
calorimetric data on the olivine polymorphs (a-olivine, /3-
modified-spinel, and y-spinel) to constrain the width of the 
a+ /3 divariant loop. By requiring the phase diagram for the 
Mg2Si04-Fe2Si04 system to be internally consistent thermo­
dynamically, we have attempted to determine the sharpness and 
magnitude of a seismic discontinuity resulting from a phase 
change in olivine. 

If the partial molar free energies of Mg2Si04 and Fe2Si04 

components are known as functions of pressure, temperature, 
and composition, then the boundaries of the stability fields for 
the various phase assemblages (a, a+ /3, p, p + y and so on) 
can be calculated explicitly. To compute the free-energy func­
tions, we require knowledge of the enthalpies, entropies, 
volumes, and solution activities of the components in the various 
phases at the pressures, temperatures and compositions of inter­
est. We used the available experimentally-measured values of 
the enthalpies and entropies5

•
12

-
14

, heat capacities'S, molar 
volumes and coefficients of thermal expansion4

, elastic moduli 16
, 

and activity coefficients17 for the phases and components in 
question. Where measured values were extremely uncertain or 
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